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Abstract 
Any space based system, whether it is a robot arm assembling parts in the space or an onboard system mon- 
itoring the space station, has to react to changes which cannot be foreseen while on earth. As a result, apart 
from having domain-specific knowledge as in current expert systems, a space based AI system should also 
have general principles of change, This paper presents a modal logic which can not only represent change' 
but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and 
axioms which specify how the knowledge base should change when the external world changes are also 
specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of 
reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, 
namely minimize change and muxim'ze coherence. A possible-world semantics which incorporates the 
above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning sys- 
tem can be used to specify actions and hence form an integral part of an autonomous reasoning and plan- 
ning system. 

1. Introduction 
Due to the prohibitive costs of manned missions to outer space, unmanned explorations of distant objects is 
the only credible alternative. As man starts exploring deeper into space, the need for advanced autonornus 
systems becomes inevitable. Space based systems need to be autonomous with respect to two important 
aspects, namely, a) control and b) reasoning. As the communication delay between autonomous vehicles in 
outer space and earth is beyond acceptable limits, such vehicles should have independent control of their 
movement. For much the same reasons, they should also have independent decision making skills. Unless 
they are equipped with such capabilities they are unlikely to survive in an hostile environment. Also it is 
very difficult, if not impossible to preprogram such capabilities. This paper discusses onl!, the reasoning 
capabilities of an autonomous system and not its control aspects. 

Two main requirements for an autonomous reasoning system are 

a. that the system be dynamic, i.e. any changes in the external environrneLt should be immediately 
reflected in the systems view of the environment. In other words the system should be capable of 
changing its knowledge-base automatically based on the changes in the external environment. 

b. that the system be reactive [8] i.e. it should be capable of changing its focus and pursuing an alterna- 
tive goal if and when it is required, In other words the system should be capable of changing its goals 
automatically based on the changes in the external environment. 

An example would help to illustrate the dynamic and reactive aspects of an autonomous, space based AI 
system. Consider a robot whose main goal is to explore the terrain of an hostile environment. During the 
exploration phase the sensors of the robot will constantly keep feeding information about the external 
environment. Some of this information might be in conflict with the robot's existing knowledge. The 
responsibility of the dynamic reasoning component of the robot is to accommodate this information from 
the external world with as little damage as possible to the current knowledge base. During the exploration 
phase if there is a sudden unexpected event, say a volcanic eruption, then the robot must be capable of 
reaczing to this situation by abandoning its goal of exploration and instead acquire the goal of survival and 
try to achieve it. This process of changing the focus of attention or changing the goals is an integral part of 
the reactive component of the reasoning system. In [8] and [7] Georgeff et. al. describe the Procedural Rea- 
soning System (PRS) and discuss its use in an autonomous mobile robot and in a diagnostic system for the 
space shuttle. 
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It is quite clear that any space based system, whether it is a robot arm assembling parts in the space or 
an onboard system monitoring the space station, it has to react to changes which cannot be foreseen while 
on earth. As a result, apart from having domain-specific knowledge as in current expert systems, a space 
based AI system should also have general principles of change. Unfortunately, standard first-order logic 
and deductive reasoning have very little to say about dynamic reasoning. This is because most of the rea- 
soning which is done using first-order logic has been restricted to computing the logical consequences of 
sentences, which can be categorized as static reasoning. This paper describes a modal logic and illustrates 
how dynamic reasoning can be canied out in this logic. The dynamic reasoning described in this paper 
incorporates two general, intuitive principles of change, namely, minimize change and m i m i z e  coherence. 
The axiomatization of this dynamic reasoning system is inspired by the postulates of theory change, first 
proposed by Gardenfors et. al. [6,1]. Although, most of this paper will concentrate on the dynamic reason- 
ing system. it also discusses how to integrate the dynamic reasoning system with a reactive planning sys- 
tem, to obtain a full-fledged embedded system capable of reasoning and planning autonomously in any hos- 
tile environment. 

2. Statics of Belief Systems 
Traditional knowledge-based systems, typically have two main modules: 

a. Knowledge Base (KB) - which contains domain specific information in some formal language, which 
is normally first-order logic or a syntactic variant of first-order logic with procedural attachments. 

b. Inference Engine (E) - which performs static reasoning on the knowledge base. 
The KB is taken to be a set of beliefs about a particular problem domain and the IE is capable of answering 
queries regarding the belief system. Such knowledge bases are essentially static, as they cannot represent 
or reason about how the KB changes. 

This section will present a IU3 or belief system, which can model the evolving nature of knowledge 
bases. The static aspects of the belief system will be dealt in this section and the dynamic aspects of the 
belief system will be postponed to the next section. 

The formal language & under consideration is a modal logic of beliefs. The objects of beliefs will be 
taken to be first-order formulas with equality [14]. The beliefs will be taken to be time-dependent. Thus the 
formula BELIEF (t, 0) represents the belief of the agent (or robot or the AI system) at time point t ,  
that the formula 9, is the case. For example, the formula BELIEF (13 : 0 0, power-lef t ( 2  1 1 , might 
be the belief of the robot th,t at 13:OO hrs, the number of hours of power left for it is 2 hours. In the 
language &, quantifying temporal terms into the scope of the modal operator BELIEF is allowed, but 
quantifying individual terms is not allowed. 

Usually the se3antics of the BELIEF operator is given in ttXmS of a possible-world SCCCS::~ lity rela- 
tion, 'B, which .naps a possible world to a set of possible worlds. In the language L1 the relation J, maps a 
possible world at a given insrant of time to a set of possible worlds at that given instant of time. Also the 
satisfaction is with respect to a world at u particular instant of time. Thus if KI, is a Kripke interpretation of 
modal logic, and TA the term assignment, then the satisfaction of belief formulas with a particular variable 
assignment VA, is given as follows, 

KI, w, TA(t) I= BELIEF ( t ,  0) [VA] iff for all w' such that qw, TA(t), w'), KI, we, t I= 

The axiomatization for the above time-dependent belief system, called the B-modal system, are the axioms 
of first-order temporal logic and the standard KD45 axiomatization for beliefs [IO, 171. In a KD45-modal 
system the B relation has to be serial, transitive and euclidean. The class of models of the time-dependent 
belief system, whose 3 relation satisfies the above conditions are called %models. The soundness and 
completeness of the time-dependent belief system can be stated as follows, 
Theorem 2.1: The B-modal system is sound and complete with respect to the class of %models. 
Proof: The proof of the above theorem is straightforward and is proved in [171. 

The B E L I E F  modal operator can also be ueated as a self-belief operator as in autoepistemic (AE) 
logic [lS]. In AE logic the agent reasons about his own beliefs and lack of beliefs. An agent believes a sen- 
tence if it is contained in his set of beliefs at that current instant of time. He does not believe it, if it is not 
contained in his set of beliefs. Thus AE logic is complete with respect to the beliefs and non-beliefs of the 
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agent. A Kripke interpretation where the beliefs are treated as self-belief operators will be called an autoep- 
istemic Kripke interpretation or AKI. 

3. Semantics of Dynamic Belief Systems 
In most of the commercially available knowledge-based systems or expert system shells, any changes to the 
KB have to be done manually. For a space-based AI system this solution is unacceptable for two main rea- 
sons, 

1. the time delay for updates will be too costly and might endanger the mission and 

2. maintaining the integrity of the KB will be difficult, especially if the input data is inconsistent with the 
existing KB. 

Thus for any space-based AI system, automatic updates of the KB is a must. Two of the most popular sys- 
tems for updating knowledge bases are the Truth Maintenance System (TMS) [4] and Assumption-based 
TMS (ATMS) [ll]. TMS keeps track of how each and every formula was inferred, which are called 
justifrcan'ons and incrementally modifies these justifications whenever there is an update. ATMS keeps 
track of the premises which are used in deriving a formula, called assumptions , and incrementally modifies 
them. However, in both these mechanisms the book-keeping required may not only be space consuming, 
but might also turn out to be time-consuming. Thus for a space-based AI system such mechanisms may be 
unsuitable. 

In this section three basic dynamic operations, namely, expansion, contraction and revision are intro- 
duced. These operators are then used for reasoning about changing knowledge bases. The semantics of 
these operations are discussed in this section and the dynamic reasoning system is discussed in the next sec- 
tion. 

Consider the situation where the agent (or robot) receives a fmt-order sentence 4 from the external 
world. The relationships between this formula and the set of beliefs of the system at time t, can be 
enumerated as follows, 

1. the agent believes in 4 at t. 

2. the agent believes in 7 4  at t . 
3. the agent does not believe in 6 nor 7@ at t and hence the agent is agnostic about 9. 
4. the agent does believes in + and 7+ at t anti hence the agent has inconsistent beliefs about 4. 

Inconsistent belief states are disallowed and hence, relation 4) above does not hold. The process by which 
an agent moves from one of the three regions(1, 2, or 3) to any of the other two is called the dynamics of 
the system. As there are three states and each transition involves two states there are totally 3* different 
transitions. Ignoring the trivial transitions of remaining in the same state six different transitions are left. 

Expansion: Agnostic state + Belief in Cp. 
Contraction: Belief in q 3 Agnostic state. 
Revision: Belief in -,@ + Belief in 9. 

The terminology and approach is an extension of the work done by Gardenfors and others [6,11. While 
their approach is non-modal and at the meta-level, we introduce modal operators and carry out the analysis 
at the object level. 

The language of the time-dependent belief system is extended to the language & , by introducing three 
dynamic modal operators- EXPAND, CONTRACT and REVISE to denote expansion, contraction and 
revision respectively. Thus EXPAND (t , 9, u )  is read as 'the expansion by the agent at t with respect 
to Cp is u', where Cp is a first-order sentence and t and u are temporal terms (constants or variables). There 
is no need for any modal operators for N-expansion and N-contraction as they can be expressed by the 
modal operators EXPAND and CONTRACT respectively. Strictly speaking there is no need for the modal 
operator REVISE also as it can be defined using EXPAND and CONTRACT. Nesting of these Operators 
are not allowed. As AE belief systems are uniquely determined by the first-order formulas, it is sufficient to 
consider the expansion, contraction and revision of first-order sentences alone. For example, expanding 
with respect to a belief sentence in an AE belief system is equivalent to expanding with respect to the object 
of the belief, and expanding with respect to a non-belief sentence is equivalent to contracting with respect 
to the object of the non-belief. 

N-Expansion: Agnostic state + Belief in 7 4  
N-Contraction: Belief in + + Agnostic state 
N-Revision: Belief in 9 + belief in -9. 
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Given a set of beliefs at some particular instant of time t, and the nature of change, namely, expansion. 
contraction or revision the set of beliefs at the next time instant can be constructed and the semantics of the 
modal operators EXPAND, CONTRACT and REVISE are definable using this construction [17]. Alterna- 
tively, the semantics of the dynamic modal operators, can be given based on the autoepistemic Kripke 
interpretation, AKI. The latter approach is followed in this paper. The semantics of dynamic operators are 
based on selection functions, which select some possible worlds as being closer to the current world than 
the others [2,12]. When the agent performs expansion or contraction, he is said to move into one of these 
closer worlds and designate these worlds as the worlds of the next time instant(s). 

Consider an agent with a proposition p in some world w at time t 1. Now the agent wants to expand 
with respect to the formula r. He can do so in many ways. He can move into a time point t2, where p, 
r are true or a time point t 3 where only r is true or a time point t4 where p, q, r are true and so 
on. Amongst the different alternatives the agent should choose only some of them, based on certain criteria. 
The principles of minimal change and maximal coherence will be used in selecting the alternatives. Accord- 
ing to these criteria, the selection function for expansion, or expansion function, denoted by E, should 
choose the time point t 2 ,  where p, r are true. The other time points are also accessible from t 1 but' 
all of them have to pass through the time point t2. Thus the time point t 3  can be obtained from t2 
after a contraction with respect to p. Similarly, the time point t 4 can be obtained from t 2  after an 
expansion with respect to q. Also it should be noted that the expansion function E and the contraction 
function C, depend on the current time point, the current world and the proposition with respect to which 
the expansiordcontraction is performed. The result of the selection function is a set of time points. 

W 

t4 

Figure 1. Expansion and Contraction Functions 

Figure 1 shows the possible relationships between the different time points. 

just propositional formulas. The semantics of the dynamic belief system is given below. 
Definition: The dynamic interpretation is a tuple, D = <'E, C AKb,  where 

The selection functions discussed above can bc generalized to handle first-order scntcnces, instead of 

E and Care functions which map, W (set of worlds), TU (set of time points), and 2*" (set of set of 
worlds) to a set of time points or zTU. 
AKI is an autoepistemic Kripke interpretation. 

The satisfaction of belief formulas are as described before. Satisfiability of the dynamic modal operators is 
as follows, 
Definition: A dynamic interpretation DI = <Z, C, A K b ,  satisfies a well formed formula I$, at world w and 
time t (written as DI, w, t I= +) given the following conditions, 
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1. DI, w, t I= EXPAND (t ,  Q, u) iff u E aw, t, II$IID1), where I$ is a first-order sentence. 

2. DI, w, t I= CONTRACT ( t ,  Q, u) iff u E Aw, t, II$IID1), where @ is a fust-order sentence. 

3. DI,w, t b R E V I S E ( t ,  Q, U) iffDI,w, t I= CONTRACT(t, TQ, V) mdD1.w. v I= 
EXPAND (v, Q, u) , where Q is a first-order sentence. 

The notation II$IID1 stands for all the worlds of the interpretation DI, which satisfies 0. More formally, 11Q1IDf 
= (w I DI, w, t I= (I for any t E TU). Condition 3 is an analog of the Levi identity, which is a theorem 
in Alchourron, Gardenfors and Makinson [l]. 

This completes the semantics of the dynamic operations. In the next section the axiomatization of the 
dynamic belief system is discussed. This axiomatization forms the basis of the dynamic reasoning system. 

4. Dynamic Reasoning System 
A reasoning system is specified by a set of axioms and inference rules. Given a set of formulas, the axioms 
and inference rules are used to infer more formulas which are called the logical consequences of the axiom 
system. In the case of static reasoning the formulas are first-order formulas which represent the world at 
the current time instant. Using the axioms and inference rules of fmt-order logic more formulas can be 
derived which also represent the world at the current instant of time. In the case of dynamic reasoning the 
formulas represent the world of the current time instant and the formulas which are added to the existing 
world or removed from the existing world. Based on the axioms and inference rules of the dynamic reason- 
ing system more formulas are derived, which represent the state of the world at the next time instant. Thus 
the dynamic reasoning system will determine what will be true in the next time point, given the current 
time point and the nature of change. The next three subsections describe the axioms and inference rules of 
the dynamic reasoning system. 

4.1 Expansion 
By the very definition of expansion, the expansion of a FOE sentence $, should result in a belief of $ at the 
next time instant. This is called the Axiom of Inclusion [6.11. 
Axiom of Inclusion 

(ml) E X P A N D ( t ,  I$, u) -+ B E L I E F ( u ,  $) 
Semantically the above axiom states that, 

(CEl) If u E ~ ( w ,  t, III$llD’) then w E I ~ B E L I E F  (u, $1 llD1. 

Expansion is an operation which preserves the beliefs of an agent. If u is the world obtained after 
expanding t with respect to Q then all the belief formulas at t continue to hold at u although some of the 
non-belief formulas at t may be believed at u. In other words, expansion converts some of the agent’s 
non-beliefs into beliefs, while at the same time preserving his existing beliefs. This property is called the 
Axiom of Preservation of Beliefs. 
Axiom of Preservation of Beliefs 

( a 2 )  EXPAND(t, 4, u) + 
( B E L I E F ( t ,  a) + B E L I E F ( u ,  a)) 

(CE2) If u E z(w, t, III$II”I) and w E HBELIEF (t, a) llD1, then w E I ~ B E L I E F  (u, a) llD1. 
Semantically, the above axiom states that, 

If the agent already believes in Q at t then expansion with respect to Q will yield no new beliefs. This 
is a case of trivial expansion where the agent’s beliefs as well as non-beliefs are preserved. This is called 
the Axiom of Trivial Expansion. 
Axiom of Trivial Expansion 

The semantic condition for the above axiom states is as follows, 
(m3) B E L I E F ( t ,  9) A EXPAND(t ,  $, u) 4 ( B E L I E F ( t ,  a) = B E L I E F ( u ,  a)). 

(CE3) If w E I ~ B E L I E F  (t, $) llD1 and u E ~ ( w ,  t, II$IID1) then (w E I ~ B E L I E F  ( t ,  a) IID1, iff 
w E I ~ B E L I E F ( U ,  U)II~I). 

The operation of expansion is monotonic. Thus when belief in world t implies belief in world v then 
belief in the expanded world of t will imply belief in the expanded world of v. The following Axiom of 
Monotoniciry mirrors this fact. 
Axiom of Monotonicity 
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(m4) ( B E L I E F ( t ,  a)  + BELIEF(v, a ) )  A E X P A N D ( t ,  $, U) EXPAND(v, @, 
y) + (BELIEF(u, p )  + B E L I E F ( y ,  P I ) .  

(CE4) (If w E I ~ B E L I E F  ( t ,  a)  ID', then w E I ~ B E L I E F  (v, a) IID1) and u E a w .  t, II$IID1) 
and y E E(w, v, ll$IID') then (If w E I ~ B E L I E F  (u, p) HD1, then w E HBELIEF (y, p)  IID1). 

The axioms AEl-AE3 state that if u is the expanded world of t with respect to $ then the beliefs at t 
are preserved at u and the agent acquires belief in $ at u. It does not rule out the possibility of the agent 
acquiring beliefs which are in no way related to $ nor the original world at time t . In other words the only 
beliefs at u are the beliefs at t and the belief in $ and all its consequences, where $ is a fust-order sen- 
tence with respect to which the expansion is being carried out. This is equivalent to minimizing the acquisi- 
tion of beliefs during expansion. Thus any belief formula at u which is not already in t has been obtained 
by an explicit expansion or is a consequence of an explicit expansion. 
Axiom of Minimization of Beliefs 

Semantically the above axiom translates into the following condition. 

(AE5) B E L I E F ( u ,  $) -$ B E L I E F ( t ,  $) v ( E X P A N D ( t ,  a, u) A B E L I E F ( U ,  
BELIEF(u, a) 3 $ 1 ) .  

Semantically the above axiom translates to the following condition, 
(CE5) If w E I ~ B E L I E F  (u, +) l l D x  then (w E I ~ B E L I E F  (t, $1 l l D x  or (u E 'E(w, t, IlallD') and w 
E IIBELIEF (u, BELIEF (u, a)  =I $1 IID1)). 

While axioms (AE2), (AE3) and (AE4) enforce the principle of w ' m a l  coherence, axioms (AE1) and 
(AE5) enforce the principle of minimal change. 

The following inference rule which states that if and $z are equivalent then expanding with respect 
to either one of them will give the same result is also needed. Modal systems which are closed under this 
type of inference rule are called classical systems [3]. 

(RE1)From l - 4 ~  =q2infer I- E X P A N D ( t ,  u) = E X P A N D ( t ,  $2, u). 

The axioms and inference rule (AEl)-(AES) and (REl) capture the proof-theoretic notion of minimal 
change and maximal coherence for expansion. The conditions (CEl)-(CES), on the expansion function and 
the belief relation capture the semantic notion of the closest possible worlds which obey the principles of 
minimal change and maximal cohereice. The semantic conditions (CEl)-(CES) describe a closest expanded 
world. The class of models whose !E selection function satisfies the conditions (CEl)-(CES) are called the 
E-models. 

4.2 Contraction 

The axioms of contraction are very .;imilar to the axioms of expansion. The axiom corresponding to the 
axiom of inclusion for expansion, is the Axiom of Exclusion for contraction. Thus if the world t is con- 
tracted with respect to $ to give u then the agent must not believe @ at u. 
Axiom of Exclusion 

Semantically the above axiom states Lhat, 
(AC1) C O N T F G C T ( t ,  @, U: + - IBELIEF(u ,  9) 

(CC1) If u E ~ ( w ,  t, IIQP) then w E w - IIBELIEF (u, Q) !ID1. 

Just as expansion preserves the beliefs of an agent one would expect contraction to preserve the non- 
beliefs of an agent. In fact, this is the case if one assumes that the world does not contain any AE belief for- 
mulas, i.e. formulas of the form 7BELIEF (t , $) =I y ~ .  For such cases, the following Axiom of Preser- 
vation of Non-beliefs which is analogous to the Axiom of Preservation of Beliefs holds. 
Axiom of Preservation of Non-Beliefs 

CONTRACT(t, 4, u) + 
( i B E L I E F ( t ,  a)  4 iBELIEF(u, (Y) ) 

However, in the more general case, where the world contains both AE and universal AE beliefs the 
above axiom does not hold. Consider the case whcre the agcnt contracts the formula + to go into a time 
point u. where the AE belief T B E L I E F  (u, $) 3 y.f is true. Now as the agent contracts @, the formula 
T E E L I E F  ( u ,  4) will be true and this will cause y~ to be true and hence y to be bclieved. Thus in the 
presence of AE beliefs the agent can acquire new beliefs during contraction. The acquisition of these beliefs 
should be minimized. Hence the new beliefs acquired by the agent should be the logical consequences of 
T B E L I E F  (u, $ 1 .  where $ is the formula with respect to which the agent has performed contraction. The 
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following axiom called the Axiom of Minimization of Beliefs is analogous to the corresponding axiom of 
expansion. 
Axiom of Minimization of Beliefs 

(AC2) B E L I E F ( u ,  0) j B E L I E F ( t ,  I$) v (CONTRACT(t, a, u) A B E L I E F ( u ,  
i B E L I E F ( u ,  01) 3 $ 1 ) .  

Semantically the above axiom translates to the following condition, 
(CC2) If w E ~IBELIEF  ( u ,  $) llD1 then (w E ~ I B E L I E F  ( t ,  $) llD1 or (u E c(w, t, IlallD1) and w 

If the agent does not believe Q at t then contraction with respect to Q will not increase the non-beliefs 
of the agent. In other words under the above conditions the contraction operation preserves the agent’s 
beliefs as well as non-beliefs. This results in the following Axiom of Trivial Contraction, 
Axiom o f  Trivial Contraction 

E l l B E L I E F ( u ,  i B E L I E F ( u ,  a) 3 $ ) I I D 1 ) ) .  

(AC3) 7 B E L I E F ( t ,  $) h CONTRACT(t, $, U) -+ ( i B E L I E F ( t ,  a) 
i B E L I E F  (u, a) ) .  

The semantic condition for the above axiom is as follows, 
(CC3) If w E W - I ~ B E L I E F  (t, I$) ItD1 and u E a w ,  t, II(OIID1) then (w E W - I~BELIEF (t, 
a) tiD1, iff w E w - ~IBELIEF (u, a) IID1). 

The axiom of monotonicity is not satisfied by contraction. This is because contraction reduces the 
beliefs of the agent and is therefore non-monotonic in nature. 

While axiom (Am) stated what are the formulas which should be acquired in the contracted world, 
axiom (AC5) states what are the beliefs which should be given up during contraction. It states this 
indirectly by requiring whatever is lost during contraction should be recovered during expansion. As the 
agent gains as little as possible during expansion (due to the Axiom of Minimization of Beliefs), the agent 
has to loose as little as possible for the following axiom to hold. This implies that the following axiom per- 
forms the function of minimizing non-beliefs and is called the Axiom of Minimization ofNon-beliefs. 
Axiom of Minimization of Non-beliefs 

(AC4) CONTRACT(t, $, u) A EXPAND(u, e ,  v) -+ ( B E L I E F ( t ,  01) -+ 
B E L I E F  (v, a) 1. 

(CC4) If u E a w ,  t, IIQIID1) and v E aw, u, IIQIID1) then (w E I~BELIEF (t, a) IID1, then w E 

I ~ B E L I E F  (v, a) tID1). 
A strict equivalence of the consequent of (AC4) does not hold. Consider the case where Q is not present in 
t. Then according to axiom (AC3) the time points t and u will have identical beliefs. Now if u is 
expanded with respect to $, then at v the agent. will believe in Q but did not have this belief at t, which 
proves that the strict equivalence does not hold. 

and Q2 are equivalent then contracting with respect 
to either one of them will give the same result is also needed. 

Semantically, the above axiom is equivalent to the following condition, 

The following inference rule which states that if 

(RC1)Frorn I- infer I- CONTRACT (t, $I, u) = CONTRACT (t ,  Q2 ,u ) .  

Axioms (ACl)-(AC4) together capture the proof-theoretic notion of maximal coherence and minimal 
change for contraction. The conditions (CCI)-(CC4), on the contraction €unction and the belief relation 
capture the semantic notion of the closest possible worlds which obey the principles of minimal change and 
maximal coherence. The semantic conditions (CC1)-(CC4) describe a closest contracted world. The class 
of models whose C selection function satisfies the conditions (CC1)-(CC4) are called the C-models. 

4.3 Revision 

As revision can be expressed in terms of expansion and contraction only one axiom is needed for revision. 
This axiom states that revising with respect to $ is equivalent to contracting with respect to TQ followed 
by expansion with respect to (0. This axiom is a reformulation of Levi identity [6]. 
Axiom of Revision 

(m1) REVISE(t, 9, U )  + CONTRACT(t, +$, V) A EXPAND(v, $, U) 

The axiom system for the language &, called the basic dynamic (ED)-model, is the B-modal system 
together with the axioms and inference rules for expansion, contraction and revision. The basic Zrmodel is 
defined as a model of the dynamic interpretation DI, whose B relation is a %model, whose E function is a 
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E-model and whose Cfunction is a C-model. 

The soundness and completeness of the dynamic reasoning system is stated below. Once again the 
details of the proof can be found in [17]. 
Theorem 4.2: The BD-modal system is sound and complete with respect to the class of all basic D-models. 

4.4 Actions and Planning 
Expansion, contraction and revision are the most primitive or fundamental dynamic operations. However, 
they are not the only dynamic operations. The dynamic operation which has received a great deal of atten- 
tion in AI is the notion of actions. In the situation calculus [ 131 approach actions are treated as transforma- 
tions from one situation to another. Situations are like possible worlds, introduced in the previous section. 
Actions can be defined in terms of the dynamic operations expansion, contraction and revision. The 
dynamic operations can also be used to define parallel actions. This helps in providing a unifying architec- 
ture for dynamic reasoning as well as planning. This section gives a brief description of how to define 
actions in terms of the dynamic operations and provides insights into a completely integrated autonomous. 
reasoning and planning system. 

Actions are normally defined in terms of preconditions and postconditions. If a certain precondition 
holds at the current instant of time and an action is carried out then the post-condition holds in the next time 
instant. This can be expressed as the modal formula ACTION (t , p, a, y, u) , which states that at 
t if the agent believes p and the action a is carried out then the agent will believe in y at the next time 
instant u. The axiom for action is defined as follows. 
Axiom of Action 

A C T I O N ( t ,  p,  a, y, u) ZE B E L I E F ( t ,  p )  A R E V I S E ( t ,  y, u). 

The same methodology 3s above can be used to define both sequential and parallel actions. Let ctl ; 
a2 denote two sequential actions and a1 II a, denote two parallel actions. The axioms for these actions can 
be defined as follows, 
Axiom of Sequential Action 

A C T I O N ( t ,  h P2, a1 ; az, yl h yz, u) SE B E L I E F ( t ,  p i )  h R E V I S E t t ,  
71, V) A B E L I E F ( J ,  8 2 )  h R E V I S E ( v ,  "12, u). 

A C T I O N ( t ,  pi A p 2 ,  a1 11 C ( 2 ,  y1 A Y2,  u) E B E L I E F ( t ,  A p 2 )  h 

R E V I S E ( t ,  y1, U) A R E V I S E ( t ,  yz, u). 

Axiom of Parallel Action 

The following example provides a simple situation, where the theory developed in this paper can be 
used. 
Example: 
Consider the blocks-world, at time t 1, where there are two blocks A and B, such that the E :d colored 
block, A, is a, Ic\.ation L1 and the Blue colored block, B, is at location L2. Also both block and B are 
clear. The la YS in this domain can be stated as follows, a) No two blocks are on the same locaLion, b) No 
block occupies more than one location, c) A clear location has nothing on top of it, and d) No block has 
more than one color. This information is stated as follows in the dynamic belief system. 

1.2 V t  (BELIEF (t, o n ( x ,  1) A 1 # m + Ton(x,m) ) ) 

1.3 v t  ( B E L I E F  (t ,  c l e a r  (1) = Ton (x, 1) ) ) 

The contingent information about the blocks world at time t 1 is stated as follows, 
1.5 B E L I E F  ( t l ,  c lear  (A) ) 1 . 6  T B E L I E F  (tl, l c l e a r  (A)  ) 
1.7 B E L I E F  (tl, clear  ( B )  1 1 . 8  T B E L I E F  (tl, Tclear ( B )  
1.9 B E L I E F  (tl ,  on ( A ,  L 1 )  ) 1 . 1 0  Y B E L I E F  (tl, Ton ( A ,  L1) ) 
l . l l B E L I E F ( t 1 ,  o n ( B , L 2 ) )  1 . 1 2  7 B E L I E F  (tl, Ton ( B ,  L 2 )  ) 
1.13 B E L I E F  (tl ,  c o l o r  ( A , R e d )  ) 1 . 1 4  7 B E L I E F  (tl, l c o l o r  ( A , R e d )  ) 
1.15 B E L I E F  ( t l ,  c o l o r  (B ,  B l u e )  ) 1 . 1 6  TBELIEF (tl, - c o l o r  (B, B l u e )  ) 

1.1 v t ( B E L I E F ( t ,  o n ( x , l )  A x # y -+ 7on(y,l))) 

1.4 v t ( B E L I E F ( t ,   color(^,^) A c f d -+ ~ c o l o r ( ~ , d ) ) )  

Using the laws 1.1 to 1.4 and the beliefs 1.5 to 1.16 the following additional beliefs can be derived, 
1.17 B E L I E F  (tl, (A, B )  ) 1 . 1 8  T E E L I E F  (tl, on (A,  B )  ) 
1.19 B E L I E F  (tl ,  Ton ( B , A )  1 1 . 2 0  l B E L I E F ( t 1 ,  o n ( B , A ) )  
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1.21 BELIEF (tl, (A,  L 2 )  ) 1 . 2 2  TBELIEF (tl,  on (A,  L2) ) 
1.23 B E L I E F  (tl, Ton (B ,  L 1 )  ) 1 . 2 4  T B E L I E F ( t 1 ,  o n ( B , L l )  
1.25 B E L I E F  (tl, l c o l o r  ( A , B l u e )  ) 1 . 2 6  I B E L I W  (ti ,  c o l o r  ( A , B l u e )  
1.27 B E L I E F  ( t l ,  l c o l o r  ( B , R e d )  ) 1 . 2 8  T B E L I E F  (tl, c o l o r  ( B , R e d )  ) 

Assume that there are two robots: the painting robot and the block moving robot. Let the painting robot 
paint the block B using R e d  paint and at the same time let the block-moving robot move the block B to 
location A. The action p a i n t  (B,  R e d )  has no preconditions but it causes the color of B to be R e d .  
The action m o v e  ( B, A) requires that both the blocks B and A be clear. The post-condition of perform- 
ing the action move (B, A )  is that the block B is on A. As the preconditions of both the actions are 
believed at t 1, both the actions can be carried out in parallel. From the axiom of parallel actions this is 
equivalent to revising t l  with respect to on (R, A) and with respect to c o l o r  (B ,  R e d ) ,  to give the 
time point t2. Using the axioms of expansion, contraction and revision the time point t 2  can be derived 
from the time point t 1. The state of the world at t 2  is given below. 
2.5 B E L I E F  ( t 2 ,  Tclear  ( A )  ) 2 . 6  TBELIEF  ( t 2 ,  c lear  ( A )  
2.7 B E L I E F  ( t 2 ,  c l ea r  ( B )  ) 2 . 8  7 B E L I E F  ( t 2 ,  l c l e a r  ( B )  ) 
2.9 B E L I E F  ( t 2 ,  on (A,  L1) ) 2 . 1 0  l B E L I E F ( t 2 ,  l o n ( A , L l )  1 
2.11 B E L I E F  ( t 2 ,  (B ,  L 2 )  ) 2.12 TBELIEF  ( t 2 ,  on ( B ,  L 2 )  ) 
2.13 B E L I E F  ( t 2 ,  co lo r  ( A , R e d )  ) 2 . 1 4  ?BELIEF  ( t 2 ,  l c o l o r  ( A , R e d )  ) 
2.15 B E L I E F  ( t 2 ,  l c o l o r  ( B ,  B l u e )  ) 2 . 1 6  TBELIEF  ( t 2 ,  c o l o r  (B,  B l u e )  1 
2.17 B E L I E F  (t2, Ton (A, B )  ) 2 . 1 8  ?BELIEF  (t2, on ( A , B )  ) 
2 . 1 9 B E L I E F  ( t 2 ,  o n ( B , A )  ) 2 . 2 0  l B E L I E F ( t 2 ,  l o n ( B , A ) )  
2.21 B E L I E F  ( t 2 ,  Ton (A,  L 2 )  ) 2 . 2 2  7 B E L I E F  ( t 2 ,  on (A ,  L 2 )  
2.23 B E L I E F  ( t 2 ,  Ton (B ,  L 1 )  ) 2 . 2 4  -BELIEF ( t 2 ,  on (B ,  L1) ) 
2.25 B E L I E F  ( t 2 ,  l c o l o r  ( A , B l u e )  ) 2 . 2 6  l B E L I E F ( t 2 ,  co lo r  ( A , B l u e )  ) 
2 . 2 7 B E L I E F ( t 2 ,  c o l o r ( B , R e d ) )  2 . 2 8  l B E L I E F ( t 2 ,  l c o l o r ( B , R e d )  1 

Note that not only the formula on (B ,A)  i s  believed, but all its consequences, namely l c l e a r  (A) 
and Ton (B ,  L 2 )  are also believed. Similarly the formula color (B, Red) and its consequence 
- c o l o r  ( B ,  B l u e )  are also believed. Thus the principles of minimal change and maximal coherence 
solves two of the important problems in planning; the frame problem 1131 and ramification problem 191. An 
alternative approach to planning using the principles of minimal change and maximal coherence at the 
meta-level is discussed in [5 ] .  

In order to obtain a completely autonomous masoning system, capable of dynamic rcasoning and reac- 
tive planning, the architecture mentioncd in this paper should be extended to a beliefdesire-intention archi- 
tecture 1161. The principles of minimal change and maximal coherence can then be used not only for 
change in beliefs. but also for change in desires and intentions. Such a system would act like a dynamic 
reasoning system as described in this paper and as a reactive planning system as described in 181. Such a 
system would be able to react rationally, within 3 reasonable amount of time, without any human interven- 
Lion, to any unforeseen situation and will be ideal for space-based applications. 

5. Conclusion 
This paper presents a dynamic belief system capable of representing and reasoning about change. The 
dynamic rcasoning system based on the dynamic belief system embodies two general principles of change, 
namely minimal change and maximal coherence. The dynamic reasoning system can be used as a module 
for a more general purpose autonomous reasoning system capable of reacting to any unforeseen cir- 
cumstances. Such systems will prove to be crucial for future space based AI systems. 
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